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The theory on which this  investigation,   the determination of depths from 
vertical aerial photographs taken over non-uniform short-crested waves,   is based, 
appears  in Reference  2.     In the for ego? rg report, the iae-sion of waves who»s erect 
height vtu 'es  transversely to the direction of travel has  been investigated. 
Cuch waves are  called "short-crested" to distinguish them from waves having long 
straight crests at right angles to the direction of travel,   which are called 
"long-crested".     Since most -srind generated -waves of appreciable  size are short- 
ores ted,   to seme extent,   the term short-crested has usually been reserved for 
waves  for which the two associated wavelengths are of  the same order  of magni- 
tude.     It is found  that the weakest winds which are capable  of raising waves at 
ail, generate  long-crested waves.    But stronger winds  can and do raise  short- 
crested waves.     To a first approximation,   for which the waveheight to wavelength 
ratio is   small,   the  surface elevation may be written 

r) = a cos (*f x -^t) cos ^ 

•. • where x is the distance from some fixed line perpendicular to the direction of 
travel,  y is the distance from another fixed line in the direction of travel, 
L 5s the wavelength in the direction of travel, L is the wavelength ab right 
angles to the direction of travel, T is the period and 0 is the amplitude. 

Actually a short-crested wave can be represented as the sum of two long- 
crested waves traveling at equal a:nd opposite angles to the positive x-direction 
for 

2 cos z ••'it .- y ) -¥ )+|-cos(2ir(£ 
fr) 

ZJLA. ^ 
T   ; 

The first long-crested component has erects parallel to the Tine  y s — y- 

Such a wave is while the second has crests parallel to the lin<>  y = -r— x 

capable of traveling unchanged in form with a velocity de+ermined directly from 
the velocities of its iong-crested components.  We denote by L0 , C0  and "7 
the wavelength, velocity and period of one of the long-crested component waves, 
and by C and I corresponding quantities for the shore-crested wave. 
Denoting by 2 Q    the angle between the two lines of crests, we see from the 
sketch below 

*ln9. 
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In water of constant depth 6  tha Telocity of a long-crested wars is given by 

Co2   • I*1 Wh *£L   . 

Snhn+it.n+.inir   fn-r    (% and I   „    i"   'hartns   o.f    i     anf1   I  '      wrs   finri   that 

2TT   COS    g      an"   L cos   0 

WWFF   tonh(i^ V/:^(V)2)   . 

This equation can be rearranged to give 

C- -%-— D tonh —-— D   where T is the wave period and D - */1 + \TT/    • 

TWhen a short=crested wave moves shoreward each component wave refracts 
so as to become parallel to the shore0  If the short-crested wave moves at right 
angles to the shore line the length L' remains unchanged while L decreases<> 
The result is an apparent change to a long-crested wave form.. 

Timed vertical aerial photographs of surf areas in the vicinities of 
Monterey and Oceanside, California, and of Clatsop Spit, Oregon, were examined. 
Only those taken at Clatsop Spit exhibited a short-crested, non-uniform wave 
patterns the other two areas indicated long-crested uniform waves0  Out of a 
total of seven sorties flown over- Clatsop Spitj five were analyzed fcr wave ve- 
locity and for depthso  The fa wero Sorties number 49A (4-9) May 6, 1950s 49A 
(13-17) May 6, 1950s 52B May 10, 1950s 55A May 15, 1950s 59A (10-14) May 18, 
1950 and b9A (22-26*1 May 18. 1950, (See References 1 and 5), 

For determining depths between breaker zone and the shore- the equation 
v- - Q u  was usedo 

Three methods vrere followed in computing depths outside the breaker zone,. 
First was a modification of JoWo Johnson's method, described in Reference 3c 
The second method was an aritljnetical solution for the instantaneous velocity 
of the wave crests by tabulating di.t?icos vsc tirnds and using third differences, 
and computing each individual wave length at a point--the point being the po- 
sition of the crest on the range lina»  The wave length at the point v.afi de- 
termined by interpolation rather than by an averaging procesSc la  this method, 
the periods were computed directly from the -oalocitie? and wave lengths,  Tn 
the third method, average velocities and average period *ere determined as in 
J.iWo Johnson's method, but wave lengths at the crest positions vsore determined 
by interpolation as m the second method. 

Since the quantity L/L' is used in the velocity equation when dealing 
with short-crested waves, the crest length must be measured on the phot' ..-.,'e • ••'<* - 
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In this study, the crest pattern was marked on the photographs using a grease 
marking pencil until a major portion of the photo area was delineated.  The 
pattern resolves into a diamond shape, fairly uniform over the entire area.  One 
diagonal is the value  L , the other is L'.  The measurement of the diagonals is 
not oritioal since a large change in the ratio produces but a small change in 
quantity  D .  The diagonals were measured over the area of the range lines, and 
an average value was adopted for different portions of the ranges.  Through the 
five sorties, the values of L/L' varied only from 0.20 to 0.33, causing a var- 
iation in D of from 1.02 to 1.05. Although values of L/L' close to unity are 
found in deeper water, refraotion tends to decrease this ratio markedly as waves 
approach shallcR- water. One is lead to the conclusion that in the shallow depths 
of interest for amphibious landings the effect of the wave length L' is negligibly 
Small   and   ons   nan   unnlv   +hn   lnnff-crnsteH   IVisnrv  wi +:h   lH+.lo   afv^y   in   +UU   J.«JO~«.;*- 

. m        • " "O ~~       %f -----   mem  —        —» r* 

Side and Panton (Reference 6) found that the transformation from short- to long- 
orested waves takes place when d/L  is about 1/13„  Tney assume that waves are 
long-crested when the crest length is five times the wave length. 

Tables 1 through 4 are included to show the mechanics of tabulation and 
of computation.  The determination of individual scales for each photograph is not 
included since it involved simply the ratio of the measured distance on the 
photograph to the known ground distance between the tops of two towers, and re- 
ducing this ratio to a sea level scale.  It may be well to point out that these 
individual scales are subject to errors of an erratic nature due to tilt. 

Table 1 is a consolidation of the tabulated distances out to wave crests 
scaled on the photographs 22 through 26 of Sortie 59A. 

Table 2 shows the method of determining instantaneous velocities or the 
wave crests at a particular instant of time.  In a five-photo sortie, the instant 
is the time of exposure of the third photograph.  Distances out to eac i crest 
are tabulated alongside the times of exposure.  The algebraic differences between 
distances are tabulated in the next column on alternate rows.  These are the 
first differences designated  A'0 •  The algebraic differences of the A'o •• 
are tabulated in the following column on alternate rows.  These are the second 
differences designated A"o .  The algebraic differences of the A"0«s  are 
the third differences designated A"'o  , and are listsd as shown.  The quan- 
tities in parentheses are the first and third difference columns and on line 
with the times are the mean of the differences above and below the numbers in 
parentheses.  In the first difference column, they are designated A'i/2   i in 
the third difference column they are designated  A'"|/2   • '^ie  equation for 

A'     A'". 
velocity then is C= A ''?  — 6 t/zr . Where distances to crests ars not 

shown, the velocities are actually obtained from first differences only. 

The interpolation for wave lengths at crest positions together with the 
calculations for depth are shown in Table 3.  Data from the tables in Reference 4 
were used to determine the quantity  dD/[_ t  having determined the quantity 

tanh -r  s  DOT'  " ^e  va*ue °^ ^/L in the table opposite the value of 

tanh 2   \  dD (listed as tcnh 2 \  d ) is multiplied by L/D to obtain <j which 
is then reduced to MLLW by the tide correction. 

Table 4 includes the tabulation for depths inside the breaker zone B end 
for depths outside the breaker zone by J.W. Johnson's method.  The only variation 
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'from Johnson's method is the use of the term D whioh applies to short-crested 
8 ye terns o 

The time-distance diagram (Figure 1) is included to show how the average 
velocities and periods for Tabls 4 are determined.  The period of 10; 4 seconds was 
obtained by averaging over three ranges, whereas the lines representing periods 
are shown for range 0+00 only, and the average of these lines will not be 10.4 
seconds• 

None of the profiles plotted from the results are satisfactory, (See 
Figures 2,3,5 and 6,)  Several of the points are off as much as lOOjiC of the 
sounded depth=  Only A few of the profiles suggest the actual shape of the 
profile.  The methods applied do not seem to be sensitive to bottom irregular- 
ities except in a raw cases, and these few instances may be purely accidental. 
Only the general trend of the beach gradient is reliable<> 

The sorties which showed the greatest non-uniformity of scale were analyzed 
again using an average scale to see whether perhaps the variation in scale was 
due to tilt, rather than to variable flying height. As indicated in the profiles 
in the appendix, this did nothing to improve the profiles, rather it increased 
the errors in general* 

Sorties 48A, 49A and 52B, when averaged out, gave a very regular profile, 
good in portions, but much in error out in the deeper water (see Figure 4)<> 

In general, the computed depths were too small except for those deter- 
mined from sortie 55A.  This particular sortie exhibited relatively short- 
period waves, the order of 10 seconds. However, sortie 59A showed about the 
same period, and yet on studying the resulting profiles, it is seen that those 
from this sortie are better than any of the others.  The photographs in all 
seven groups were generally about of the same photographic quality, that is to 
say, the wave crests stood out equally well, the tone wa* the same, and the scale 
variations were of the same magnitude^ It is difficult -co say where the differ- 
enoe lies which would cause such variations in the computed depths. All seven 
groups would logically be subjeot to the same experimental errors. Each group, 
of course, is subject to the errors in taking the soundings. As pointed out in 
References I and 5. there was a definite daily change in profiles which was par- 
ticularly pronounced following periods of high waves (see Figure 4).  The errors 
in oomputed depths, however; were much greater than would be caused hy errors in 
soundings and changes in profiles in the elapsed time between soundings and 
photography. 

The Johnson method is very definitely the most straightforward method 
of making measurements and reducing the data to actual profii^Sc  The other 
two methods, namely interpolating to find velocities and wave lengths arith- 
metically, and interpolating to find wave lengths using Johnson's time-distance 
diagram for velocity, do not appear to add any more accuracy to the method. 
They simply take more time. 

We are faced with the situation where, in applying wave theory of 
regular short- or long-crested waves to waves of great irregularity, we do not 
get a satisfactory answer.  Although it would be physically possible to obtain 
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photographs -which give the three-dimensional representation of the sea surfaoe 
at the same time that we obtain photography to measure wave advance, prac- 
tioally, the labor involved in taking the photography and in measuring and re- 
ducing the data to aotual depths would be prohibitive* On the other hand, 
this is the type of data that would be needed to make any just analysis of 
noo-iniform wave systems. A practical solution to the problem is not adequate* 
The solution must be rigorous.  If a practioal and expedient approach is to be 
used, then the inadequacy of the solution must be recognized and appreciated, 
admitting of errors and incon^istancies. 
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Clatsop Spit,   Oregon 
Sortie  59A(22-26) 
18 May 1950    3|50 PM PDST 
Range 0 + 00 

Soaled distance from base I ft) Distanoe from base (ft) 1 
Wave 
Nfo. 

Photo22 
1|5746 

Fhoto23 
1»5737 

Fhoto24 
It5723 

Photo25 
Is5709 

Photo26 
lf5717 

Photo22 
6|58 

Photo23 
^1015

8 
Photo24 
1415

8 
Photo25 
18 *68 

Photo26 
22.66 

1 .0460 .0446 .0443 - 264 256 254 - - 

2 .0548 .0502 .0490 * 315 288 280 - - 

4 .0701 .0646 403 371 - - - 

6 • 0620 o0673 • L'OUC 
r\rrr9Jk 

• V/W f "I - ATI 359 345 *?P 
i 

6 .0895 .0762 .0677 .0593 .054?, 514 437 387 539 ?10 

8 .1057 .0990 .0900 .0803 .0710 607 568 515 458 406 

9 .1337 .1201 .1100 .1008 .0910 768 689 630 575 520 

10 .1518 .1430 .1336 - - 872 820 765 - = 

11 .1676 .1570 .1482 .1360 .1239 963 901 848 776 708 

12 - - .1704 - - - - 975 - - 

13 .2107 .1962 .1835 .1695 .1546 1211 1126 1050 968 884 

14 .2281 - .2004 *1849 .1730 1311 - 1147 1056 989 

15 .2512 .2343 .2195 .2067 .1914 1443 1344 1256 1180 1094 

16 .2787 .2600 .2410 .2262 .2145 :oui T A no 1379 T 0O1 
-A. fc» ^ .4- 

18 .3338 .3114 «2920 .2756 .2587 1*18 1787 1671 1573 1479 

19 .3883 o 6© / V .3430 .3340 .3150 2231 2111 1997 1907 1789 

20 .4383 .4172 .4016 .3832 .3641 2518 2393 2298 2188 2082 

21 
i  

.4774 .4569 .4395 .4195 .4048 2743 2621 2515 2395 2314 

• 

fable 1.  Tabulated scaled distances and computed distances from baseline. 

.1 
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Olatsop Spit,   Oregon 
Sortie 591(22-26) 
18 Hay,   1950    3»50 PM PDST 
Hange 0 + 00 

!   I 

At  t ! - , A' A"„ A'"0  C Dist. . A'. A"0 A'"c C 

1 Wave 9 Wave 10 

6.5  : 768 872 
4.0 -79 -52 

4.0     10.5 689 (-69) + 20 820 (-54) -3 
4    r\ -ifi -55 •3 

4.05    14.5 650 (-57) + 4 (-10) 13.6 765 (-55) 0  (+2) 13,6 
4.1 -55 - 4 -55 0 

4.05    18.6 
4.0 

22.6 

575  (-55) 0 (-55) 0 
-55 -55 

520 

Wave 11 Wave 13 

6.5 963 1211 
4*0 -62 -85 

4.0     10.5 301 (-58) + 9 1126 (-81) + 9 
4.0 -53 -28 -76 -15 

4.05    14.5 848  (-63) -19 (-3) 15.3 1050 (-79) -6   (-6) 19.3 
4.1 -72 + 23 -82 + 4 

4.05    18.6 776  (-7C) + 4 368 (-83) -2 
4.0 -68 -84 

22.6 708 884 

Wave 14 Wave 15 

6.5 1311 1443 
4.0 MA 

-06 _OQ 

4.0     10.5 (1229)(-82) 0 1344 (-94) +11 
4.0 -82 -9 -88 + 1 

4.06    14.5 1147 (-P7) -9 (+12) 22.0 1256 (-82) +12   (-11) 19.8 
4.1 -91 +33 -76 -22 

4.05    18.6 1056 (-79) + 24 1180 (-81) -10 
4.0 -67 -86 

22.6 989 1094 

•   : 
Table 2.    Determining instantaneous velocities by third differences. 

>< 
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Clatsop Spit, Oregon 
Sortie 59A (22-26) 
18 May, 1950 3;50 PM FDST 
Range 0 -t* 00 

Dist. 
Wave from L at* 

•gpoint 
Dist.to* L at* C T(seo) D tanh D d(ft) d oorr. 

Ho. Base gpoint Crest ft/sec) 27TdD •1 toMmr 
(ft) (ft.) (ft.) (ft.) L (ft) 

8 515 
115 573 

9 650 
135 698 

1 "  » O 1 1.0? r?.ftfi .0468 5.7 0.1 

10 765 
83 807 

103 13.6 7.6 1.02 .342 .0567 5.7 0.1 

11 548 
127 912 

100 15.3 6.5 1.02 .449 ,0769 7.5 1.9 

12 975 
75 1013 

— 

13 1050 
97 1099 

84 19.3 4.4 1.02 .837 .1925 15.8 10.2 

14 1147 
109 1202 

103 22.0 4.7 1.02 .894 .2293 23.2 17.6 

15 1256 
123 1318 

116 19.8 5.9 1.02 .640 .1207 13.7 8.1 

16 1379 
292 1525 

173 25.4 6.6 1.02 .734 .1492 25.4 19.8 

18 1671 
326 1834 

308 26.2 11.7 1.02 .427 .0726 21.9 16.3 

19 1997 
301 2148 

313 24.4 12.8 1.02 ,364 .0608 18.7 13.1 

20 2298 
217 2407 

252 25*0 x. Ot* .472 • 0816 20.2 14.6 

21 2515 

* Interpolation to determine wave length at crest position 

Table 3. Depth determinate  by instantaneous velocities and interpolated wave 
length. 
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T - 10.4 sec. 
C0

S 53.2 ft/aeo 
L0= 553' 
D = 1.02 

Glatsop Spit 
Sortia 59A(22-26) 
18 May 1950    3j50 PM PST 
Range 0+00 
Tide  Stage       5.6» 

t 

r 

Obtained from time-distance 

Table 4.     Depth 

l*ave 
Number 

Dist* 
from 
Base 
(ft.) 

C* 
(ft/sec) 

d 
(ft) 

d 
corr.to 
MUX 
(ft) 

1 260 0.9 0 -5.6 1 
2 300 4.5 0.6 -5.0 

4 390 8.6 2.3 -3.3 

5 370 11.0 3.8 -1.8 Based on C* • gd 

6 340 9.2 2.6 -3.0 

6 450 15.4 7.4 1.8 

8 

9 

510 

580 

12.8 

13.4 

5.1 -0.5 

0/CoD d D/L0 ** GOrTo to 
MLLW (ft) 

.247 .0099 5.4 -0.2 

9 700 17.2 .317 .0165 8.9 3.3 

10 S2C 1 1     c 
J.U1 *> 

fiACi 5.5 -0,1 

11 840 15.6 .288 .0136 7.4 1.8 

13 1050 .372 .0231 12,5 6.9 

14 1150 20.2 .37£ .0231 12.5 6.9 

15 1180 20.0 .369 .0228 12.4 6.8 

15 1350 23.4 .431 .0318 17.2 11.6 

16 1300 15.0 .550 ii. 1 

1490 27.6 .508 .0452 24.7 19.1 

18 1580 23.6 .435 .0323 17.5 11.3 

18 1800 30.8 .568 .0582 31.5 25.9 

19 2010 26.7 .492 .0422 22.9 17o3 

20 2310 26.9 .495 .0428 23.2 17.6 

21 2520 27.4 .505 .0448 24.3 18.8 

diagram 

determination - Johnson mstho< 
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\    " 

55O0 

MTO  i£9S 

FIGURE    3 



MLLW 
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 I 
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CLATSOP SPIT,  OREGON 
Range  Nl + 50 
S<MKM 8 May 1950 
Injerpojoted profllt jron; jpundjnjB 

MM 

DISTANCE  FROM  BASE,   IN FEET 

+ :o 

1                 1                 1                 1 

CLATSOP SPIT, OREGON                                              """'** 
Range SI + 50 
Sounded  25 May 1950                                  , 

— 

1                                             1 "                   = 

0 f? 

-10 

Z 
a. 

-JO 

+ 10 

CLATSOP SPIT 
Range 0+00 

Sounded 16 May 1950 

 25 Moy 1950 

oN, 

-10 — 
CLATSOP  SPIT,  OREGON 
Ronge Nl + 50 
Sounded 25 May 1950 

1000 
_L 
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1600 2000 
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•MO 

0 
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Sortlt 594(22-26) 
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•*^-r** 

Range 0 + 00 I 
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-50 

2500 
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Range NI + 50 

Sounded profile 
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50 

40 

CLATSOP SPIT, OREGON 
Rongt O+OO 
IS May I9S0 
Sortie 5SA, No. 10 
     Sounded promt (16 May I95C) 

Inetontorieoue yfjocifj, Interpolated gave length, computed period 
3000 

500 1000 1500 2000 2500 3000 

Of*—f 

a 

500 I0O0 1500 2000 
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t* Ifiti Hb   a 
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